PRACTICE PROBLEMS for MIDTERM 1, 2006
22S:30/105, Statistical Methods and Computing
Spring 2005, Instructor: Cowles
Midterm 1
Show your work on any problems that involve calculations
There are 50 total points on this midterm. Point values for each question are shown in parentheses. I will grade on a curve.

Name: \qquad Course no. (30 or 105) \qquad

1. (6) The faculty in the department of Linguistics at the UI are:

Jill Beckman
 Maureen Burke
 Rob Chametzky
 William Davies
 Alice Davison
 Marc Light
 Rosemary Plapp
 Catherine Ringe
 Jerzy Rubach
 Roumyana Slabakova
 Bob Wachal

62964881458308369453461095950569680009001968712633
Use the list of random digits above to choose a simple random sample of three of these people to serve on a committee. Write enough on the list of names, and make markings on the list of random digits, so that I can tell what procedure you used. Write the names of the three people you selected here:
2. The dataset for this problem includes distances and cheapest airline fares to certain destinations for passengers flying out of Baltimore, MD (as of $1 / 8 / 1995$). The variables are:
dest: destination
dist: distance from Baltimore (in miles)
fare: fare (in dollars)
(a) (4) Refer to the stem and leaf plot for the dist variable (below). What is the median of the distribution of values?

Stem Leaf	\#
140	1
122	1
100	1
85	1
6149	3
418	2
	2
09	1

(b) Refer to the SAS output attached to the end of the exam to answer the following questions.
i. (1) Which is the response variable, dist or fare?
ii. (2) What proportion of the variability in the response variable is explained by the explanatory variable? (numeric answer)
iii. (2) Suppose that city A is 100 miles farther from Baltimore than city B. How much higher or lower a fare would the regression model predict for city A than for city B?
iv. (2) Two points are plotted as circles on the scatterplot. If these points were removed, would the sample correlation coefficient r be more likely to get larger or get smaller? Briefly justify your answer. vskip 1.0 in
v. (2) One point on the scatterplot is plotted as an "x." Is this point likely to be influential? Briefly justify your answer.
3. (5) In 2002, the scores of the 1.3 million students who took the Scholastic Aptitude Test (SAT) could be described by a Normal distribution with mean 1020 and standard deviation 207. What proportion of students scored between 1000 and 1400 ?
iii. none of the above
(b) (2) The population of interest is (circle one):
i. all people living in the Iowa City/Coralville area
ii. all people listed in the Iowa City/Coralville phone directory
iii. the people living in the homes whose telephone numbers are selected
iv. the people who actually answer the questions
v. none of the above
(c) (2) What data type is the variable "number of colds in the past year" from question d ? (circle one)
i. binary
ii. nominal
iii. ordinal
iv. discrete quantitative
v. continuous quantitative
vi. none of the above
(d) (2) What data type is the variable "general health" from question c ? (circle one)
i. binary
ii. nominal
iii. ordinal
v. discrete quantitative
v. continuous quantitative
vi. none of the above
(e) (2) Which plot or plots from the list below could be used to summarize the distribution of the variable "general health" from question c? (circle as many as are correct)
i. bar graph
ii. boxplot
iii. histogram
iv. line plot
v. pie chart
vi. scatterplot
vii. stem and leaf plot
viii. none of the above
6. Consider the variable age in undergraduate students at the university of Iowa.
(a) (1) The distribution of ages of undergraduate students is most likely to be (circle one)
i. skewed to the left
ii. skewed to the right
iii. approximately symmetric
(b) (2) Briefly justify your answer to the preceding question.
(c) (1) From the list below, circle the best choice of numeric summary of this variable
i. frequency table
ii. mean and standard deviation
iii. 5-number summary
(d) (2) Briefly justify your answer to the preceding question.

> The REG Procedure
> Model: MODEL1 Dependent Variable: fare
Number of Observations Read 12 Number of Observations Used

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	1				
Error	10	14735	24735	17.59	0.0018
Corrected Total	11	38795	1406.02467		
\quad Root MSE		37.49700	R-Square	0.6376	
\quad Dependent Mean	166.50000	Adj R-Sq	0.6013		
\quad Coeff Var	22.52072				

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|t\|$
Intercept	1	82.57767	22.74905	3.63	0.0046
dist	1	0.11776	0.02808	4.19	0.0018

Model: MODEL1
Dependent Variable: fare

