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Two independent sample problems

• Goal of inference:

– to compare the characteristics of two dif-
ferent populations

– to compare responses to two different ”treat-
ments”
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• Examples of two-independent-sample prob-
lems:

– A medical researcher is interested in the
effect on blood pressure of added dietary
calcium. She conducts a randomized com-
parative experiment in which one group
of subjects receives a calcium supplement
and a control group gets a placebo.

– A climatologist wishes to test whether seed-
ing with silver nitrate affects the amount
of rainfall produced from clouds. He ran-
domly selects 26 clouds to seed, and mea-
sures the rain output by each of them as
well as the rain output by 26 other ran-
domly selected unseeded clouds.
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Which study design?

The following situations require inference about
a population mean or means. Identify which
type of problem each one is:

• one-sample

• paired-sample

• two independent samples
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1. To check a new method of chemical analy-
sis, a chemist gets a reference specimen of
known concentration from the National Insti-
tute of Standards and Technology. She then
makes 20 measurements of the concentration
of this specimen using the new method and
checks for bias by comparing the mean of her
20 measurements with the known concentra-
tion.

2. Another chemist is checking the same new
method. He has no reference specimen, but
a familiar analytic method is available. He
wants to know if the new and old methods
agree. He takes a specimen of unknown con-
centration and measures the concentration
10 times with the new method and 10 times
with the old method.
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Comparing means from two different

populations

Assumptions:

• We have two simple random samples, from
two distinct populations.

– The samples are independent.

∗ The selection of one sample has no in-
fluence on the selection of the other. In
particular, there is no matching.

– The sizes of the two samples need not be
the same.

– We measure the same variable for both
samples.

• The populations are normally distributed.
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The set-up for two-independent-sample

t-tests

Group 1 Group 2
Population Mean µ1 µ2

Standard deviation σ1 σ2
Sample Mean x̄1 x̄2

Standard deviation s1 s2
Sample size n1 n2
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Example: Cloud seeding

We wish to use our sample data to test whether
the population mean of rainfall produced per
cloud is the same for unseed clouds as for seeded
clouds. We will use a two-sided test assuming
that we don’t know in advance in what direction
a difference is likely to go.

H0 : µu = µs or µu − µs = 0

Ha : µu 6= µs or µu − µs 6= 0

We will conduct our test at α = .05.
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Thus the quantity we really want to estimate
is the difference between the two population
means

µu − µs

As usual, we will use the corresponding sample
statistics

x̄u − x̄s

as our best guess of the unknown population
value of interest.

Now we need to standardize x̄u− x̄s in order to
find out whether it is different enough from 0 to
provide strong evidence against H0.

That is, we need to compute

(x̄u − x̄s) − (µu0 − µs0)

standard error of (x̄u − x̄s)
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Suppose:

• we knew the standard deviations σu and σs

in the populations of rainfall amounts from
unseeded and seeded clouds

•

σu = σs = σ (some known value)

Then the standard error of (x̄s − x̄u) would be
√

√

√

√

√

√

√

√
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+

σ2
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And the z statistic is

z =
(x̄u − x̄s) − (µu0 − µs0)

√
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The UNIVARIATE Procedure

Variable: rainfall
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The UNIVARIATE Procedure

Variable: lograin
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Example:

We will log-transform the rainfall amounts to
get more symmetrical distributions of sample
values. Suppose we knew that the population
standard deviation of log-transformed rainfall
amount was 1.5 log acre-feet for both seeded
and unseeded clouds.

σu = σs = σ = 1.5
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The results of measuring and logtransforming
the rainfall are as follows:

Variable: LOGRAIN

SEEDED? N Mean Std Dev Std Error

--------------------------------------------------------------

S 26 5.13418678 1.59951361 0.31369043

U 26 3.99040563 1.64184748 0.32199278

The z statistic is

z =
3.99 − 5.13 − 0

√

√

√

√

√

1.52

26 + 1.52

26

=
−1.14

0.416

= −2.74

The cutoff values of z for a two-sided hypothesis
test are -1.96 and 1.96. Because -2.74 is farther
from 0 than either of these cutoffs, we can reject
the null hypothesis and conclude that the pop-
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ulation mean of log rainfall is different in seeded
clouds from unseeded clouds.
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If we do not know σ in the two populations, we
need to use the data to estimate the standard
error of (x̄u − x̄s).

This can be done under two different assump-
tions:

1. The standard deviations in the two popula-
tions are known to be equal.

2. The standard deviations in the two popula-
tions are not known or assumed to be equal.
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Two-sample t-test when variances are

assumed to be equal

We must estimate the common variance σ2 us-
ing the pooled variance s2

p from the two sam-
ples:

s2
p =

(nu − 1)s2
u + (ns − 1)s2

s

nu + ns − 2

Then we compute the t-statistic by substituting
s2
p for σ2 in the formula for the z-statistic.

t =
(x̄u − x̄s) − (µu0 − µs0)
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For the cloud-seeding example,

s2
p = 1.62

t =
3.99 − 5.13 − 0

√

√

√

√

√

1.622

25 + 1.622

25

=
−1.144

0.458

= −2.5

We would compare this to the .025 cutoff for a
t distribution with nu + ns − 2 = 50 degrees of
freedom.

According to Table C, this cutoff would be 2.009.

Because the value we obtained is farther from 0
than ths, we can reject the null hypothesis.
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When we cannot assume that the vari-

ances in the two populations are equal

When we do not assume that the standard de-
viations in the two populations are equal; i.e.
when we think

σm 6= σf

then we estimate

• σ2
u with s2

u

• σ2
s with s2

s
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Then we compute the t statistic as

t =
(x̄u − x̄s) − (µu0 − µs0)

√
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For the cloud seeding example, this gives

t =
3.99 − 5.13 − 0

√

√

√

√

√

1.642

25 + 1.602

25

=
−1.144

0.458

= −2.54

This form of t statistic does not come from an
exact t distibution. Statistical software uses an
approximation to compute the p-value in this
case. Generally, the p-value is very close to that
obtained under the assumption of equality of
variance.
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SAS for two-independent-sample t tests

data cloud ;

infile ’cloud.dat’ ;

input rainfall seeded $ ;

lograin = log(rainfall) ;

run ;

proc ttest ;

class seeded ;

var lograin ;

run ;
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TTEST PROCEDURE

Statistics

Lower CL Upper CL

Variable seeded N Mean Mean Mean

lograin S 26 4.4881 5.1342 5.7802

lograin U 26 3.3272 3.9904 4.6536

lograin Diff (1-2) 0.2409 1.1438 2.0467

Statistics

Lower CL Upper CL

Variable seeded Std Dev Std Dev Std Dev Std Err

lograin S 1.2544 1.5995 2.208 0.3137

lograin U 1.2876 1.6418 2.2664 0.322

lograin Diff (1-2) 1.3562 1.6208 2.0148 0.4495

Statistics

Variable seeded Minimum Maximum

lograin S 1.411 7.9178

lograin U 0 7.0922

lograin Diff (1-2)
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T-Tests

Variable Method Variances DF t Value Pr > |t|

lograin Pooled Equal 50 2.54 0.0141

lograin Satterthwaite Unequal 50 2.54 0.0141

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

lograin Folded F 25 25 1.05 0.8971


