22S:105
Statistical Methods and Computing

Sample size for confidence intervals with σ known
t Intervals

Lecture 13
Mar. 1, 2006

Kate Cowles
374 SH, 335-0727
kcowles@stat.uiowa.edu

The margin of error

- The margin of error is the value that we add onto \bar{x} and subtract from \bar{x} to get the endpoints of a confidence interval.
- For confidence intervals for the mean of a normal population with σ known, this is

$$
m=z^{*} \frac{\sigma}{\sqrt{n}}
$$

- Equivalently, the margin of error is one half the width of the c.i.
- The margin of error depends on
- the level of confidence desired
- the population standard deviation (which we can't control!)
- the sample size (not the population size)

Sample size for a study involving a confidence interval

- Suppose a group of obstetricians wish to carry out a study to estimate μ, the mean birthweight in the population of infants born at UIHC.
- Suppose the obstetricians believe that the population standard deviation of birthweights of infants born at UIHC is the same as that of infants overall in the US.

$$
\sigma=15 \mathrm{oz}
$$

- The obstetricians would like a 95% confidence interval for μ that is no wider than 4 ounces. That is, they want a margin of error ≤ 2 ounce.
- How many infants do they need in their study?
- Let m denote the margin of error. Then

$$
\begin{aligned}
m & =z^{*} \frac{\sigma}{\sqrt{n}} \\
\sqrt{n} & =z^{*} \frac{\sigma}{m} \\
n & =\left(z^{*} \frac{\sigma}{m}\right)^{2} \\
n & =\left(1.96 * \frac{15}{2}\right)^{2} \\
& =216.09
\end{aligned}
$$

- A sample size must always be rounded up, so they need 217 infants in their study.

Sample size continued

What makes a sample size large?

$$
n=\left(z^{*} \frac{\sigma}{m}\right)^{2}
$$

Caveats regarding our formula for computing confidence intervals for population means

- The data must be a simple random sample from the population.
- We are not in too big trouble if the data can plausibly be thought of as observations taken at random from the population.
- "There is no correct method for inference from data haphazardly collected with bias of unknown size. Fancy formulas cannot rescue badly produced data."*
- Watch out for outliers in your dataset, because they can have a large effect on both the point estimate of μ and the confidence interval.

If outliers are not data errors, and if there is no subject-matter reason for deleting them,
get help from a statistician on computing measures of center and intervals that are not sensitive to outliers.

- Check your data for skewness and other signs that the population they came from may not be normal. If the sample size is large (i.e. $n \geq 30$) the central limit theorem says the approach is valid. If the sample size is small, the confidence level will not be correct.
- The formula $\bar{x} \pm z^{*} \frac{\sigma}{\sqrt{n}}$ requires that we know the exact value of the population standard deviation σ, which we never do.
* Moore, David S. (2000) The Basic Practice of Statistics, 2nd ed., W.H. Freeman and Co.

8

What to do when we believe the population is normal but we don't know σ

Assumptions behind this method

- The data are a simple random sample from the population of interest.
- Values in the population follow a normal distribution with mean μ and standard deviation σ. Both μ and σ are unknown.

The sample mean \bar{x} is still our point estimate of the unknown population mean μ.
\bar{x} still comes from a normal distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

- We will estimate σ by the sample standard deviation s.
- Then we estimate the standard deviation of \bar{x} by $\frac{s}{\sqrt{n}}$

Standard errors

When we use the data to estimate the standard deviation of a statistic, the result is called the standard error of the statistic.

The standard error of the sample mean \bar{x} is $\frac{s}{\sqrt{n}}$.

11
When we are estimating σ with s, we need to make our confidence interval wider to account for the uncertainty in estimation.

- (What if we had gotten a sample that happened to give a sample standard deviation s that was much smaller than the population standard deviation σ ?)
- We do this by multiplying $\frac{s}{\sqrt{n}}$ by something bigger than z^{*}.

t intervals

When we claimed to know σ, we computed confidence intervals for μ as

$$
\bar{x} \pm z^{*} \frac{\sigma}{\sqrt{n}}
$$

where z^{*} was the appropriate cutoff value from a standard normal distribution.

When we don't know σ, we will compute confidence intervals for μ as

$$
\bar{x} \pm t^{*} \frac{s}{\sqrt{n}}
$$

12

The t distribution

- There is a different t distribution for every sample size.
- We identify different t distributions by their degrees of freedom, $n-1$.
- The density curve for t distributions is
- symmetric around 0
- bell-shaped (and has only one mode)
- The spread of t distributions is greater than the spread of the standard normal distribution.
- The smaller the degrees of freedom, the more spread out the t distribution is.
- The larger the degrees of freedom, the closer the density curve for a t distribution is to a standard normal curve.
* This makes sense because the larger the sample size, the better an estimate s is likely to be for σ (i.e., the less extra uncertainty is introduced by estimating σ instead of knowing its value)

More on the t distribution

If \bar{x} is the sample mean of a simple random sample of size n value from a normal population with mean μ and standard deviation σ, then the random quantity

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
$$

follows a t distribution

Constructing confidence intervals for μ when σ is unknown

To construct a level C confidence interval for μ

- Draw a simple random sample of size n from the population. The population is assumed to be normal.
- Compute the sample mean \bar{x} and the sample standard deviation s.
- Then the level C confidence interval for μ is

$$
\bar{x} \pm t^{*} \frac{s}{\sqrt{n}}
$$

where t^{*} cuts off the upper $\frac{1-C}{2}$ area under the density curve for a t distribution with $n-1$ degrees of freedom.

- Use Table A. 2 at the back of your textbook to find t^{*}.

16

- Our data values are:

Infant Birthweight in ounces
1

2117

3140
$4 \quad 78$
$5 \quad 99$
$6 \quad 148$
7108
$8 \quad 135$
$9 \quad 126$
$10 \quad 121$

First calculate

$$
\bar{x}=116.90 \quad s=21.70
$$

The degrees of freedom are $10-1=9$. For a 95% confidence interval, we need the value of t^{*} that cuts off an area of .025 in the upper tail.

From Table C, we find $t^{*}=2.262$.
Our confidence interval is

$$
\begin{aligned}
\bar{x} & \pm t^{*} \frac{s}{\sqrt{n}}= \\
116.90 & \pm 2.262 \frac{21.70}{\sqrt{10}}= \\
116.90 & \pm 15.22=(101.38,132.42)
\end{aligned}
$$

The interval is so wide because of

- the relatively small sample size
- the relatively large variation between birthweights (large s)

