22S:30/105
 Statistical Methods and Computing

Measures of Center, continued Measures of Dispersion

Lecture 3
January 23, 2006

Kate Cowles 374 SH, 335-0727
kcowles@stat.uiowa.edu

The mean is meaningful only for quantitative data (either discrete or continuous).

- Example regarding a discrete variable: We hear reports such as that the average number of children per family is 1.9 .
- The mean is not meaningful for nominal or ordinal data.

Exception: if a binary variable is coded as 0 and 1.

Then the arithmetic mean is the proportion of observations in the dataset that have value 1 .

Example:

- An ecological study of a habitat in which 10 rare species of bird are known to have lived as of 1990
- In 1999, a naturalist is sent to spend a day in the area and to record any members of these 10 species that she observes
- A variable is coded as follows:
$-1=$ at least one member of the species was observed
$-0=$ no members of the species were observed
${ }_{4}$

observed?
1
0
3
4
5
6

8
8

- The mean

$$
\bar{x}=\frac{8}{10}=.8
$$

indicates that 80% of the species were observed.

The median

The median is the 50th percentile of a set of observations.

- Values must be sorted from smallest to largest.
- If the number of observations is odd, then the median is the middle value.

$$
\begin{array}{lllll}
75 & 80 & 82 & 88 & 95
\end{array}
$$

The median is 82 .

- If the number of observations is even, then the usual way to define the median is as the mean of the two middle values.

$$
\begin{array}{llllll}
75 & 80 & 82 & 88 & 95 & 97
\end{array}
$$

The median is $\frac{82+88}{2}=85$.

The median can be used as a measure of center for ordinal data as well as for discrete and continuous data.

Example: The NYC poll

city1yr	Frequency	Percent	Cumulative Frequency
Worse	593	61.64	593
Same	252	26.20	845
Better	111	11.54	956

- 956 people answered this question regarding whether they thought the condition of the city in June, 2003, was better, worse, or the same as one year earlier.
- If the values are sorted from smallest to largest (Worse, Same, Better), then the median will be the average of the 478th and 479th values.
- We can use the cumulative frequencies in the table to figure out what these have to be. They are both in category "Worse."
- Thus the median is Worse.

The median is not strongly affected by a few extreme values in the dataset.

Example 1:
$\begin{array}{lllll}75 & 80 & 82 & 88 & 95\end{array}$

- mean $=84$
- median $=82$

Example 2:
$\begin{array}{lllll}25 & 80 & 82 & 88 & 95\end{array}$

- mean $=74$
- median $=82$

The median is robust to extreme values.

8

The mode

- The mode of a set of values is the value that occurs most frequently.
- Example: in the NYC poll data, the mode of the "city1yr" variable is Worse.
- Example: There is no mode in the birthweights data, because no value occurs more than once.
- There may be more than one mode in a set of values.
- The mode may be reported for all types of data.

When is each measure of central tendency appropriate?

Depending on data type

- Nominal data
- mode only
- possible exception: binary data coded 0 and 1
- Ordinal data
- mode or median
- Quantitative data
- mean, median, or mode

Depending on the shape of the distribution
of values (quantitative variables)

- if the shape is approximately symmetric and has only one mode
- mean and median will be close in value
- mean is typically reported

Example: the body temperature data

From a statistical computer package:

- mean $=98.24$
- median $=98.3$

12

- if the distribution has more than one mode
- neither the mean nor the median may be representative values
- may be best to report all modes and/or to display a graph
- may occur if two or more different subgroups are represented in the sample

From a statistical computer package:

- mean $=2.7$ billion
- median $=1.8$ billion

Example:

From a statistical computer package:

- mean $=69.0$
- median $=72.0$

14
In getting the "overall picture" of quantitative data, the spread is just as important as the center of the data.

Numerical measures of dispersion

- the range
- the interquartile range
- the standard deviation

The range

- The range is the difference between the largest and the smallest observations.
- For the male Swiss doctors,
- largest value $=86$
- smallest value $=20$
- range $=86-20=66$
- For the female Swiss doctors,
- largest value $=33$
- smallest value $=5$
- range $=33-5=28$

The range shows the full spread of the data, but may be exaggerated if the largest and/or smallest values are atypical (outliers)

- Example: the 1992 billionaire data
- With Bill Gates:

$$
\text { range }=37-1=36 \text { billion }
$$

- If Bill were deleted: range $=24-1=23$ billion
- Example: the male Swiss doctors data
- With the largest two values range $=86-20=66$ billion
- If the two largest values were deleted: range $=59-20=39$ billion
- So additional measures are needed to give a more complete picture of the spread of values.

The quartiles and the interquartile range

- The first quartile is the same as the 25 th percentile
- one quarter of the observations in a dataset have values less than or equal to the 1st quartile, and the other three quarters have values greater than or equal to the first quartile
- The third quartile is the same as the 75th percentile
- three quarters of the observations in a dataset have values less than or equal to the 3rd quartile, and the other one quarter have values greater than or equal to the 3rd quartile

20

- The interquartile range (IQR) is the difference between the 3rd and 1st quartiles
- For the male Swiss doctors,
- third quartile $=50$
- first quartile $=27$
$-\mathrm{IQR}=50-27=23$
- For the female Swiss doctors,
- third quartile $=29$
- first quartile $=14$
$-\mathrm{IQR}=29-14=15$
- For the 1992 billionaires,
- third quartile $=3$ billion
- first quartile $=1.3$ billion
$-\mathrm{IQR}=3-1.3=1.7$ billion

The IQR is considered less sensitive to outliers than the range.

- Example: the 1992 billionaire data
- With Bill Gates:
$\mathrm{IQR}=3-1.3=1.7$ billion
- If Bill were deleted:
$\mathrm{IQR}=2.9-1.3=1.6$ billion
- However, in a small dataset, deletion of a few outliers may affect the IQR substantially.
- Example: the male Swiss doctors
- IQR with the two largest values included:
$-\mathrm{IQR}=50-27=23$
-IQR with the two largest values deleted:
$-\mathrm{IQR}=37-27=10$

The five-number summary for the billionaire data may be extracted from the following computer output:

Quantiles(Def=5)			
100% Max	37	99%	14
75% Q3	3	95%	6.2
50% Med	1.8	90%	4.5
25% Q1	1.3	10%	1.1
0\% Min	1	5%	1
		1%	1

Q3-Q1 1.7
Mode

1

The five-number summary

- The five-number summary provides a reasonablycomplete numeric summary of the center and dispersion of a set of values.
- The five-number summary consists of
- the minimum value
- the first quartile
- the median
- the third quartile
- the maximum value

24

Boxplots

- are used to summarize the distribution of a continuous variable

- box extends from 1st quartile to 3 rd quartile of data
- line in middle of box marks 50th percentile
- "whiskers" sticking out of box extend to adjacent values
- adjacent values are most extreme observations that are not farther away from the edge of the box than 1.5 times the height of the box
- points farther out than the adjacent values are considered outliers
- represented by circles or squares
- probably are not typical of the rest of the data

27
An idea that won't work for measuring the spread: take the average of the "deviations" of the individual observations from the mean.

Observed Value	Deviation from mean	Squared deviation	
75	$75-84=-9$	$(-9)^{2}=$	81
80	$80-84=$	-4	$(-4)^{2}=$

The standard deviation

- The standard deviation measures spread by looking at how far the observations are from their mean.
- Example: quiz scores

$\begin{array}{lllll}75 & 80 & 82 & 88 & 95\end{array}$

The mean is

$$
\begin{aligned}
\bar{x} & =\frac{75+80+82+88+95}{5} \\
& =84
\end{aligned}
$$

points.

- We want a measure of typical distance between an individual value and this mean.

28
Because the sum of the deviations is always 0 , the average deviation is always 0 !

Solution: Square the individual deviations before adding them up!

The variance and the standard deviation

- The variance s^{2} is the sum of the squared deviations divided by one less than the number of observations.

$$
\begin{aligned}
s^{2} & =\frac{\Sigma_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \\
& =\frac{238}{4}=59.5
\end{aligned}
$$

- We can think of the variance roughly as the average of the squared deviations.
- The standard deviation is the square root of the variance.
$s=\sqrt{59.5}=7.71$ points.

Facts about the standard deviation

s

- s measures the spread of values around the mean
- thus s should be used as a measure of dispersion only when mean has been chosen as the measure of center
- s is always greater than 0 unless all the observations have the same value
- s has same units of measurement as original observations
- s is sensitive to extreme observations
- like the mean
- s is the most commonly-used measure of dispersion (is often used when it is not the best choice!)

31
The mean and standard deviation together provide a reasonable numeric summary of a set of values if the distribution is approximately symmetric.

- Example: the body temperature data

Variable	N	Mean	Std Dev
TEMP	130	98.2492308	0.7331832

- Example of inappropriate use of \bar{x} and s to summarize a distribution: the billionaire data

```
Analysis Variable : WLTH
```


