22S:105
Statistical Methods and Computing

Introduction

Lecture 1
January 18, 2006

Kate Cowles
374 SH, 335-0727
kcowles@stat.uiowa.edu

2

What is statistics?

- Statistics is the science of using data to make decisions and answer questions.
- Statistics involves
- designing studies
- collecting data
- organizing and analyzing data
- interpreting and reporting results

4
On $1 / 28 / 86$ space shuttle Challenger exploded during launch

- 7 astronauts killed
- reason: gas leak through a joint that should have been sealed by two rubber O-rings
- O-rings had lost resiliency due to cold temperature

Dalal, SR, Fowlkes, EB, Hoadley, B. (1989) "Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure." Journal of the American Statistical Association, 84, 945-957.

Tufte, Edward R. (1997) "The Decision to Launch the Space Shuttle Challenger," in Visual and Statistical Thinking: Displays of Evidence for Making Decisions, Graphics Press

On the previous day, extensive discussions of whether or not it would be safe to launch

- predicted temperature for launch time: $26-29^{\circ}$
- no shuttle had ever been launched at temperature lower than 53°
- engineers who designed rocket faxed to NASA a recommendation not to launch due to risk of Oring failure at low temperatures
- NASA officials pointed out weaknesses of engineers' evidence
- after lengthy discussion, managers of rocket- making company changed their minds and recommended launch

The engineers' plot of data from previous shuttle launches: joint temperature vs. number of O-rings having some temperature-related problems

The engineers' evidence

- history of serious but non-catastrophic O-ring damage during previous cool-weather launches
- physics of resiliency of rubber
- experimental data

8
What was missing from the engineers' argument?

- quantification of the relationship between joint temperature and O-ring failure
- prediction of the probability of O-ring failure at 29°, with assessment of degree of uncertainty
an appropriate statistical method: logistic regression
- Dalal et al. carried out such an analysis (after the fact) using data from the 23 shuttle launches prior to the Challenger
- found strong statistical evidence of a temperature effect on O-rings
- we will analyze these data later in the semester

A plot showing data from all 23 previous launches, including those in which no O-rings were damaged

Subjects, observations, and variables

In statistical studies, we generally choose a set of individuals or subjects on whom data is collected.
We usually are interested in collecting a number of different kinds of information to describe each subject.
A variable is a particular characteristic that may take on different values for different subjects. For example,

- age
- gender
- diagnosis
are three variables that might be included in a study of length of hospital stays of hospital patients.

12

Types of variables

- Qualitative (textbook calls this "categorical")
- Nominal
* values fall into unordered categories
* numbers may be used to represent categories, but they are just labels
* example: variable called "occupational area" coded as
- 1 = education
- $2=$ business
- $3=$ service
. $4=$ industry
- etc., etc.
* special case: binary data, which can take on only 2 possible values
- Ordinal
* data representing ordered categories
* example: variable called "prognosis" taking on possible values "poor," "fair," "good"
- Quantitative

- Discrete

* both order and magnitude are important
* numbers represent measurable quantities
* possible values are restricted, often to be integers
* example: count of number of homicides in Johnson County in 1998

- Continuous

* numbers represent measurable quantities and are not restricted to a set of specified values
* examples: temperature, blood pressure, annual profit
* Special case: censored data
- continuous data in which values for some subjects are not observable
- some values are known only to be larger (or smaller) than some observed value - example: time-to-failure data

What data type is each of the following?

- a variable defined for each pre-Challenger shuttle launch as the answer to the question "Were any primary O-rings damaged during launch (yes/no)?"
- a variable defined for each pre-Challenger shuttle launch as the total number of primary O-rings that were damaged (out of the 6 primary O-rings in a shuttle)
- a variable defined as outdoor temperature in degrees F at launch time of each shuttle

The distribution of a variables tells what values it takes and how frequently it takes them.

- tables of frequencies and percents
- bar charts (also called bar graphs)
- pie charts
frequency distribution for nominal or ordinal data
- a set of classes or categories along with numerical counts of the number of members of each class

Example: New York Times New York City Poll, June 2003

- What is your sex?
$1=$ male, $2=$ female
- In the last year, do you think life in New York City has generally gotten better, gotten worse, or stayed about the same?
$1=$ Better, $2=$ Worse, $3=$ Same, $9=$ DK/NA
- How would rate the condition of the NYC economy? Is it very good, fairly good, fairly bad, or very bad?
$1=$ Very good, $2=$ Fairly good, $3=$ Fairly bad, $4=$ Very bad, $9=$ DK/NA
- How much do you blame the terrorist attack of 9/11 for NYC's current budet problems? $1=$ a lot, $2=$ some, $3=$ not much
- How would you describe your views on most political matters? Generally do you think of yourself as $1=$ liberal, $2=$ moderate, $3=$ conservative

sex	Frequency	Percent	Cumulative Frequency	Cumulative Percent
M	383	39.81	383	39.81
F	579	60.19	962	100.00
nycecon	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Very good	9	0.94	9	0.94
Fairly good	193	20.06	202	21.00
Fairly bad	432	44.91	634	65.90
Very bad	310	32.22	944	98.13
DK/NA	18	1.87	962	100.00
relig	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Protestant	243	25.26	243	25.26
Catholic	311	32.33	554	57.59
Jewish	86	8.94	640	66.53
Muslim/Islamic	12	1.25	652	67.78
Other	46	4.78	698	72.56
None	208	21.62	906	94.18
DK/NA	56	5.82	962	100.00

- What was the last grade in school that you completed?

1. Not a high school grad
2. High school grad
3. Some college (trade or business)
4. College grad
5. Post-grad work or degree
6. Refused

- How old are you?
- What was your income in 2002 ? Was it under $\$ 15,000$, or between $\$ 15000$ and $\$ 30000$, or over $\$ 30000$? etc. to obtain the following breakdown:

1. under $\$ 15000$
2. $\$ 15000-<\$ 30000$
3. $\$ 30000-<\$ 50000$
4. $\$ 50000-<\$ 75000$
5. $\$ 75000-<\$ 100000$
6. over $\$ 100,000$
7. Won't specify/ refused

The New York Times. NEW YORK TIMES NEW YORK CITY POLL, JUNE 2003 [Computer file]. ICPSR version. New York, NY: CBS News [producer], 2003. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2003.

20
A frequency distribution may be tabulated for a quantitative variable if the range of possible values for the variable is first divided into non-overlapping intervals.

income	Frequency	Percent	Cumulative Frequency	Cumulative Percent
< \$15000	127	13.20	127	13.20
15000-<30000	195	20.27	322	33.47
\$30000-<50000	178	18.50	500	51.98
\$50000-<75000	192	19.96	692	71.93
\$75000+	198	20.58	890	92.52
Refused	72	7.48	962	100.00

Relative frequency

- The relative frequency for a class is the percentage of the total number of observations that are in that class.
- It is computed as

$$
\frac{\text { number in class }}{\text { total number of observations }} \times 100
$$

- Relative frequencies are particularly useful for comparing sets of data with different total numbers of observations
- SAS just calls this "Percent"

Example

24
Bar charts for nominal and ordinal data

- present a frequency distribution in visual form
- categories that are possible values of the variable are listed on horizontal axis
- bar heights represent either frequency or relative frequency of observations in that class

Continuing example of New York City poll data

