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Kaplan-Meier:

Interval | at Risk Failed | Censored | Failure Rate | Survival Rate

previous A F C R=F/A S

next |a=A-F-C f c r=fla S(1-r

Decision Analysis by Backward Induction:
Working right to left:
Replace each stochastic node with its expected value.
Replace each decision node with the cost of the lowest cost decision.
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