Conversions:

$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$P(M \mid D)=\frac{P(D \mid M) \cdot P(M)}{\sum_{i=1}^{k} P\left(D \mid M_{i}\right) \cdot P\left(M_{i}\right)}$

Single Normal Sample

$\mu_{\text {box }}$ is approx $t(d f)$ with
$d f=n-1$
$\mu=\bar{x}$
$\sigma=\operatorname{sem}=\frac{s}{\sqrt{n}}$

Single Bernoulli Rate

$\mu=\hat{\mathrm{p}}=\frac{x}{n}, x=$ successes, $n=$ trials
$\sigma=\operatorname{sep}=\sqrt{\frac{\hat{\mathrm{p}} \cdot(1-\hat{\mathrm{p}})}{\mathrm{n}}}$

Relative Risk

$\ln (R R)$ is approximately normal with
$\mu=\ln (\widehat{R R})$
$\sigma=\frac{\ln \left(\frac{U C L}{L C L}\right)}{2 \cdot 1.96}$
Multiple Linear Regression
$\hat{y}=\beta_{1} \cdot x_{1}+\cdots+\beta_{k} \cdot x_{k}$
β_{i} is approximately $t(d f)$ with
$\mu=\hat{\beta}_{i}$
$\sigma=s e b$

$$
\begin{aligned}
& \mathrm{p}=\frac{\mathrm{odds}}{1+\mathrm{odds}} \\
& \text { odds }=\frac{\mathrm{p}}{1-\mathrm{p}} \\
& \mathrm{Z}=\frac{X-\mu}{\sigma} \\
& X=\mu+\sigma \cdot \mathrm{Z}
\end{aligned}
$$

Two Normal Samples

$$
\begin{aligned}
& \Delta=\mu_{2}-\mu_{1} \text { is approx } t(d f) \text { with } \\
& \mu=\hat{\Delta}=\bar{x}_{2}-\bar{x}_{1} \\
& \sigma=\operatorname{sed}=\sqrt{\operatorname{sem}_{1}^{2}+\operatorname{sem}_{2}^{2}} \\
& d f=\frac{\operatorname{sed}^{4}}{\left(\operatorname{sem}_{1}^{4}\right)} \frac{d f_{1}}{}+\frac{\left(\operatorname{sem}_{2}^{4}\right)}{d f_{2}}
\end{aligned}
$$

Two Bernoulli Rates

$$
\begin{aligned}
& \mu=\hat{\Delta}=\hat{\mathrm{p}}_{2}-\hat{\mathrm{p}}_{1} \\
& \sigma=\operatorname{sed}=\sqrt{\operatorname{sep}_{1}^{2}+\operatorname{sep}_{2}^{2}}
\end{aligned}
$$

Odds Ratio

$\ln (O R)$ is approximately normal with
$\mu=\ln (\widehat{O R})$
$\sigma=\frac{\ln \left(\frac{U C L}{L C L}\right)}{2 \cdot 1.96}$

Logistic Regression

$$
\begin{aligned}
& \ln (\widehat{o d d s})=\beta_{1} \cdot x_{1}+\cdots+\beta_{k} \cdot x_{k} \\
& \beta_{i} \text { is approximately normal with } \\
& \mu=\hat{\beta}_{i} \\
& \sigma=s e b
\end{aligned}
$$

$$
\text { Adjusted OR }=\exp \left(\beta_{i} \cdot \Delta X_{i}\right)
$$

Kaplan-Meier:

Interval	at Risk	Failed	Censored	Failure Rate	Survival Rate
previous	A	F	C	$\mathrm{R}=\mathrm{F} / \mathrm{A}$	S
next	$\mathrm{a}=\mathrm{A}-\mathrm{F}-\mathrm{C}$	f	C	$\mathrm{r}=\mathrm{f} / \mathrm{a}$	$\mathrm{S} \cdot(1-\mathrm{r})$

Decision Analysis by Backward Induction:

Working right to left:
Replace each stochastic node with its expected value.
Replace each decision node with the cost of the lowest cost decision.

